Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed
نویسندگان
چکیده
This paper reports on an evaluation of the use of artificial neural network (ANN) models to forecast daily flows at multiple gauging stations in Eucha Watershed, an agricultural watershed located in north-west Arkansas and north-east Oklahoma. Two different neural network models, the multilayer perceptron (MLP) and the radial basis neural network (RBFNN), were developed and their abilities to predict stream flow at four gauging stations were compared. Different scenarios using various combinations of data sets such as rainfall and stream flow at various lags were developed and compared for their ability to make flow predictions at four gauging stations. The input vector selection for both models involved quantification of the statistical properties such as cross-, autoand partial autocorrelation of the data series that best represented the hydrologic response of the watershed. Measured data with 739 patterns of input–output vector were divided into two sets: 492 patterns for training, and the remaining 247 patterns for testing. The best performance based on the RMSE, R2 and CE was achieved by the MLP model with current and antecedent precipitation and antecedent flow as model inputs. The MLP model testing resulted in R2 values of 0Ð86, 0Ð86, 0Ð81, and 0Ð79 at the four gauging stations. Similarly, the testing R2 values for the RBFNN model were 0Ð60, 0Ð57, 0Ð58, and 0Ð56 for the four gauging stations. Both models performed satisfactorily for flow predictions at multiple gauging stations, however, the MLP model outperformed the RBFNN model. The training time was in the range 1–2 min for MLP, and 5–10 s for RBFNN on a Pentium IV processor running at 2Ð8 GHz with 1 MB of RAM. The difference in model training time occurred because of the clustering methods used in the RBFNN model. The RBFNN uses a fuzzy min-max network to perform the clustering to construct the neural network which takes considerably less time than the MLP model. Results show that ANN models are useful tools for forecasting the hydrologic response at multiple points of interest in agricultural watersheds. Copyright 2008 John Wiley & Sons, Ltd.
منابع مشابه
ارزیابی مدلهای شبکه عصبی مصنوعی و رگرسیون خطی چندگانه در تخمین دادههای گم شده جریان روزانه (مطالعه موردی: ایستگاه هیدرومتری سنته- استان کردستان)
Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh...
متن کاملVMLP neural network design using optimization algorithms to predict spider suspend (Case Study: Watershed Dam Kardeh)
One of the most important processes of erosion and sediment transport in streams is the river most complex engineering issues.this process special effects on water quality indices, action suburbs floor and destroyed much damage to the river and also into the development plans Lack of continuity sediment sampling and measurement of many existing stations. due to the low number of hydrometric s...
متن کاملDaily Pan Evaporation Estimation Using Artificial Neural Network-based Models
Accurate estimation of evaporation is important for design, planning and operation of water systems. In arid zones where water resources are scarce, the estimation of this loss becomes more interesting in the planning and management of irrigation practices. This paper investigates the ability of artificial neural networks (ANNs) technique to improve the accuracy of daily evaporation estimation....
متن کاملEstimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)
Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...
متن کامل"Technical Report" Performance Comparison of IHACRES Model and Artificial Neural Network to Predict the Flow of Sivand River
The accurate determination of river flow in watersheds without sufficient data is one of the major challenges in hydrology. In this regard, given the diversity of existing hydrological models, selection of an appropriate model requires evaluation of the performance of the hydrological models in each region. The objective of this study was to compare the performance of artificial neural network ...
متن کامل